Overview

• The FAM is a comprehensive assessment of mathematics designed to examine the underlying neurodevelopmental processes that support the acquisition of proficient math skills.
• Assists practitioners in not only determining the presence of a general math learning disability (MLD) but also in determining the specific subtype of dyscalculia in order to better inform intervention decision making.
• Comprises 19 individual subtests measuring various aspects of math fact retrieval, numeric and spatial memory, perceptual estimation skills, linguistic math concepts, and core number sense development.
• A separate Screening Form includes three subtests that yield a single index score that assists examiners in deciding whether the risk of dyscalculia or a math learning disability is high enough to warrant further assessment.
• Training is available 24/7 on the PAR Training Portal.

Administration

• Administer with paper and pencil.
• Administration time: 35 minutes for PK; 50 minutes for K-Grade 2; 60 minutes for Grade 3+; 15 minutes for Screening Form
• Choose to administer the full battery, only the subtests associated with an individual index, or only individual subtests.
• Qualification level B or S.

Scoring and Reporting

• Can be hand scored; online scoring and reporting are available on PARiConnect, our online assessment platform.
• Yields three index scores representing each dyscalculia subtype (Verbal Index, Procedural Index, and Semantic Index) as well as a Total Index score that represents total test performance.
 o The Verbal Index score is a measure of automatic fact retrieval and the linguistic components of math.
 o The Procedural Index score is a measure of a student’s ability to count, order, and sequence numbers or mathematical procedures.
 o The Semantic Index score is a measure of visual–spatial and conceptual components, including magnitude representation, patterns and relationships, higher-level mathematical problem solving, and number sense.
Reliability, Validity, & Norms

• Standardized on a sample of 1,061 examinees in prekindergarten to college drawn from more than 30 states and based on 2013 U.S. Census statistics.
• Offers grade-based normative data (with age proxies provided); age and grade equivalents and percentiles for subtest scores; and confidence intervals, percentile ranks, z scores, and normal curve equivalents (NCEs) for index scores.
• Subtest and index scores are scaled to the familiar IQ metric, wherein the mean is set to 100 and the standard deviation to 15.
• FAM subtests have median reliability coefficients that range from .71 to .93, the majority of which are in the upper .80s and lower .90s, indicating an overall high degree of internal consistency.
• FAM indexes have median reliability coefficients that range from .93 to .98, indicating a very high degree of internal consistency.
• Includes clinical samples of more than 120 students with learning disabilities, ADHD, and intellectual developmental disorder.

FAM Subtest and Index Score Structure

<table>
<thead>
<tr>
<th>Procedural Index subtests</th>
<th>Verbal Index subtests</th>
<th>Semantic Index subtests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Number Count</td>
<td>Rapid Number Naming</td>
<td>Spatial Memory</td>
</tr>
<tr>
<td>Backward Number Count</td>
<td>Addition Fluency</td>
<td>Equation Building</td>
</tr>
<tr>
<td>Numeric Capacity</td>
<td>Subtraction Fluency</td>
<td>Perceptual Estimation</td>
</tr>
<tr>
<td>Sequences</td>
<td>Multiplication Fluency</td>
<td>Number Comparison</td>
</tr>
<tr>
<td>Object Counting</td>
<td>Division Fluency</td>
<td>Addition Knowledge</td>
</tr>
<tr>
<td></td>
<td>Linguistic Math Concepts</td>
<td>Subtraction Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multiplication Knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Division Knowledge</td>
</tr>
</tbody>
</table>